Anti-SNAIL1 [20C8]

Catalogue number: 151548 Sub-type: Primary antibody

Images:

Contributor

Inventor: Melanie Hardman

Institute: Cancer Research Technology

Images:

Tool details

*FOR RESEARCH USE ONLY

Name: Anti-SNAIL1 [20C8]

Alternate name:

Class: Monoclonal

Conjugate: Unconjugated

Cancer Tools.org **Description:** The Snail superfamily are zinc finger transcription factors. Overexpression of Snail1 can lead to cells undergoing EMT (epithelial to mesenchymal transition). This is achieved as Snail1 represses expression of E-cadherin, desmoplakin, muc-1, cytokeratin18 while enhances expression of vimentin and fibronectin. Snail1 therefore has a strong association with metastatic disease.

Purpose: Parental cell: Organism: Tissue: Model: Gender:

Isotype: IgG2a kappa Reactivity: Human

Selectivity: Host: Mouse

Immunogen: Human Snail 1 recombinant protein

Immunogen UNIPROT ID:

Sequence:

Growth properties: Production details:

Formulation:

Recommended controls: MDAMB-453; MDAMB-435; MDAMB-231; A375

Bacterial resistance:

Selectable markers: Additional notes:

Target details

Target: SNAIL1

Target alternate names:

Target background: The Snail superfamily are zinc finger transcription factors. Overexpression of Snail1 can lead to cells undergoing EMT (epithelial to mesenchymal transition). This is achieved as Snail1 represses expression of E-cadherin, desmoplakin, muc-1, cytokeratin18 while enhances expression of vimentin and fibronectin. Snail1 therefore has a strong association with metastatic disease.

Molecular weight:

Ic50:

Applications

rools.org Application: WB; ChIP; ELISA; IHC; IF; IP; WB

Application notes:

Handling

Format: Liquid

Concentration: 1 mg/ml

Passage number: **Growth medium: Temperature: Atmosphere:** Volume:

Storage medium:

Storage buffer: PBS with 0.02% azide Storage conditions: -15° C to -25° C Shipping conditions: Shipping at 4° C

Related tools

Related tools:

References

References: Ritchie et al. 2009. Proc Natl Acad Sci U S A. 106(49):20859-64. PMID: 19915149.

