Skip to main content

#160519

Anti-RA015/11.58 [11.58]

Cat. #160519

Anti-RA015/11.58 [11.58]

Cat. #: 160519

Unit size: 100 ug

Availability: 10-12 weeks

Target: Neutrophil Extracellular Trap Antigen

Class: Recombinant

Application: ELISA ; WB

Host: Human

£300.00

This fee is applicable only for non-profit organisations. If you are a for-profit organisation or a researcher working on commercially-sponsored academic research, you will need to contact our licensing team for a commercial use license.

Contributor

Institute: Queen Mary University of London

Tool Details
Target Details
Applications
Handling

Tool Details

*FOR RESEARCH USE ONLY (for other uses, please contact the licensing team)

  • Name: Anti-RA015/11.58 [11.58]
  • Alternate name: NET (Neutrophil Extracellular Trap)
  • Research fields: Drug development;Neurobiology
  • Clone: 11.58
  • Class: Recombinant
  • Conjugation: Unconjugated
  • Host: Human
  • Application: ELISA ; WB
  • Description: Rheumatoid arthritis (RA) is a joint-destructive inflammatory disorder characterized by breach of self-tolerance and production of anti–cit-peptide/protein Abs (ACPA). In the RA synovium, ectopic germinal centers (GCs) support an autoantigen-driven immune response leading to local ACPA+ B cell differentiation (1, 2). Recently, we reported that autoreactive B cells highly mutated within ectopic GCs frequently target cit-histones (cit-H2A/B) contained in neutrophil extracellular traps (NETs) (3). Somatic hypermutation (SHM) within GCs introduces single-point mutations in the variable heavy (VH) and/or variable light (VL) region of unmutated (germline) BCR, thus regulating Ag-driven B cell affinity maturation (4). Additionally, SHM can introduce N-glycosylation sites in the VH/VL regions, which can influence Ag binding and/or give an advantage during the selection process to autoreactive B cells (5–7). Circulating and synovial fluid ACPA-IgG are extensively N-glycosylated in their Fab domain and this is due to introduction of N-glycosylation sites during SHM. The biological effects mediated by the glycans in the variable domain of ACPA-IgG might modulate either the Ag binding and/or BCR signalling or might influence the binding to lectins thus giving survival signals to autoreactive B cells (5, 7, 8). Therefore, additional studies are necessary to enhance our understanding of ACPA-IgG Fab N-glycans. In particular, a direct demonstration of the relative contribution of SHM in the VH versus VL region and of the importance of Fab N-glycosylation sites for synovial B cell recognition of cit-Ags is missing. Therefore, in this study we characterized the requirement for SHM within the VH and VL regions and of Fab N-linked glycosylation for the immunoreactivity to NETs and cit-H2B in RA-rmAbs derived from CD19+ B cells obtained from ectopic lymphoid structure (ELS)+ RA synovial tissues. In particular, we present three different scenarios whereby 1) SHM in the VH region is sufficient for the binding to NETs/cit-H2B; 2) both VH and VL chain affinity maturation contribute to the immunoreactivity; and 3) the introduction of a single Fab N-glycosylation site account for most of the RA-rmAbs binding to cit-H2B. PMID: 32221039J Immunol. 2020 May 1;204(9):2374-2379. doi: 10.4049/jimmunol.1901457. Epub 2020 Mar 27.
  • Immunogen: TBD
  • Immunogen uniprot id: TBD

Target Details

  • Target: Neutrophil Extracellular Trap Antigen
  • Target background: Rheumatoid arthritis (RA) is a joint-destructive inflammatory disorder characterized by breach of self-tolerance and production of anti–cit-peptide/protein Abs (ACPA). In the RA synovium, ectopic germinal centers (GCs) support an autoantigen-driven immune response leading to local ACPA+ B cell differentiation (1, 2). Recently, we reported that autoreactive B cells highly mutated within ectopic GCs frequently target cit-histones (cit-H2A/B) contained in neutrophil extracellular trap...

Applications

  • Application: ELISA ; WB

Handling

  • Format: Liquid
  • Unit size: 100 ug
  • Shipping conditions: Dry ice

Tool enquiry

Please ensure you use your organisation email address rather than personal where possible, as this helps us locate your organisation in our system faster.

Please note we may take up to three days to respond to your enquiry.

CancerTools.org uses the contact information provided to respond to you about our research tools and service. For more information please review our privacy policy.