Anti-FN-EDB [2DS.1]

Catalogue number: 160456 Sub-type: Primary antibody

Images:

Contributor

Inventor: Tambet Teesalu **Institute:** University of Tartu

Images:

Tool details

*FOR RESEARCH USE ONLY

Name: Anti-FN-EDB [2DS.1]

Alternate name:

Class: Monoclonal

Conjugate: Unconjugated

ZancerTools.org Description: Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. This series of antibodies has been validated in vitro against glioblastoma (GBM) and prostate carcinoma xenografts, and to non-malignant angiogenic neovessels induced by VEGF-overexpression. Please see our related anti-FN-EDB antibodies from Universit...

Purpose: Parental cell: **Organism:** Tissue: Model: Gender: Isotype:

Reactivity: Human

Selectivity:

Host:

Immunogen:

Immunogen UNIPROT ID:

Sequence:

Growth properties: Production details:

Formulation:

Recommended controls: Bacterial resistance: Selectable markers: **Additional notes:**

Target details

Target: Extra domain B of fibronectin, EDB-FN

Target alternate names:

Target background: Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. This series of antibodies has been validated in vitro against glioblastoma (GBM) and prostate carcinoma xenografts, and to nonmalignant angiogenic neovessels induced by VEGF-overexpression. Please see our related anti-FN-Cancer Tools.org EDB antibodies from Universit...

Molecular weight:

Ic50:

Applications

Application: ELISA; IHC

Application notes:

Handling

Format: Liquid Concentration: Passage number: **Growth medium:** Temperature: **Atmosphere:** Volume:

Storage medium: Storage buffer: Storage conditions:

Shipping conditions: Shipping at 4° C

Related tools

Related tools:

References

References: Lingasamy et al. 2019. Biomaterials. 219:119373. PMID: 31374479.

