Anti-DGKa [M5B]

Catalogue number: 154778 Sub-type: Primary antibody Images:

Contributor

Inventor: Institute: Netherlands Cancer Institute Images:

Tool details

***FOR RESEARCH USE ONLY**

Alternate name: DGKA; Diacylglycerol Kinase Alpha

Conjugate: Unconjugated

Description: Diacylglycerol kinase alpha is an enzyme that belongs to the eukaryotic diacylglycerol kinase family. It acts as a modulator that competes with protein kinase C for the second messenger diacylglycerol in intracellular signalling pathways. It also plays an important role in the resynthesise of phosphatidylinositol's and phosphorylating diacylglycerol to phosphatidic acid.

Purpose: Parental cell: **Organism:** Tissue: Model: Gender: Isotype: Reactivity: Human Selectivity: Host: Mouse Immunogen: Immunized with an Escherichia coli cell-expressed, affinity-purified glutathione Stransferase protein of a C-terminal portion (part of the Catalytic domain) of Rat DGKu. Immunogen UNIPROT ID: Sequence: Growth properties: Production details: Formulation: **Recommended controls:**

Bacterial resistance: Selectable markers: Additional notes:

Target details

Target: DGKa

Target alternate names:

Target background: Diacylglycerol kinase alpha is an enzyme that belongs to the eukaryotic diacylglycerol kinase family. It acts as a modulator that competes with protein kinase C for the second messenger diacylglycerol in intracellular signalling pathways. It also plays an important role in the resynthesise of phosphatidylinositol's and phosphorylating diacylglycerol to phosphatidic acid.

Cancer Tools.org

Molecular weight: 77 kDa

Ic50:

Applications

Application: IP ; WB Application notes:

Handling

Format: Liquid Concentration: 0.9-1.1 mg/ml Passage number: Growth medium: Temperature: Atmosphere: Volume: Storage medium: Storage medium: Storage buffer: PBS with 0.02% azide Storage conditions: -15° C to -25° C Shipping conditions: Shipping at 4° C

Related tools

Related tools:

References

References: Schaap et al. 1993. Biochem J. 289 (Pt 3):875-81. PMID: 7679574.

Cancer Tools.org