Anti-Cytochrome P450 39A1 [M30P6D6]

Catalogue number: 152122 **Sub-type:** Primary antibody

Images:

Contributor

Inventor: Ayham Alnabulsi

Institute: Vertebrate Antibodies Limited

Images:

Tool details

*FOR RESEARCH USE ONLY

Cancer Tools.org Name: Anti-Cytochrome P450 39A1 [M30P6D6]

Alternate name:

Class: Monoclonal

Conjugate: Unconjugated

Description: CYP39A1 (cytochrome P450, family 39, subfamily A, polypeptide 1), also known as 24hydroxycholesterol 7-Ä?Â??-hydroxylase localises to both the microsome and the endoplasmic reticulum. Using heme groups as cofactors, CYP39A1 is involved in the bile acid metabolism and is specifically expressed in liver.

Purpose: Parental cell: Organism: Tissue: Model:

Isotype: IgG3 kappa Reactivity: Human

Selectivity: Host: Mouse

Gender:

Immunogen: Ovalbumin-conjugated synthetic peptide CRIEYKQRI (C-terminal sequence).

Immunogen UNIPROT ID:

Sequence:

Growth properties: Production details:

Formulation:

Recommended controls: IHC: formalin-fixed, paraffin-embedded human liver sections. WB: pooled

human liver microsomes.

Bacterial resistance: Selectable markers: Additional notes:

Target details

Target: CYP39A1-Cytochrome P450, family 39, subfamily A, polypeptide 1.

Target alternate names:

Target background: CYP39A1 (cytochrome P450, family 39, subfamily A, polypeptide 1), also known as 24- hydroxycholesterol 7-a-hydroxylase localises to both the microsome and the endoplasmic reticulum. Using heme groups as cofactors, CYP39A1 is involved in the bile acid metabolism and is specifically expressed in liver.

Molecular weight:

Ic50:

Applications

Bancer Tools.org Application: ELISA; IHC; WB

Application notes:

Handling

Format: Liquid

Concentration: 1 mg/ml

Passage number: **Growth medium: Temperature: Atmosphere:** Volume:

Storage medium:

Storage buffer: PBS with 0.02% azide Storage conditions: -15° C to -25° C Shipping conditions: Shipping at 4° C

Related tools

Related tools:

References

References: Characterisation of the oxysterol metabolising enzyme pathway in mismatch repair proficient and deficient colorectal cancer.; Swan et al. 2016. Oncotarget.:. PMID: 27341022.

