Anti-Cytochrome P450 2E1 [M12P4H2]

Catalogue number: 152160 **Sub-type:** Primary antibody

Images:

Contributor

Inventor: Ayham Alnabulsi

Institute: Vertebrate Antibodies Limited

Images:

Tool details

*FOR RESEARCH USE ONLY

Cancer Tools.org Name: Anti-Cytochrome P450 2E1 [M12P4H2]

Alternate name:

Class: Monoclonal

Conjugate: Unconjugated

Description: Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.

Purpose: Parental cell: Organism: Tissue: Model: Gender:

Isotype: IgG1 lambda Reactivity: Human

Selectivity: **Host:** Mouse

Immunogen: Ovalbumin-conjugated synthetic peptide HIGFGCIPPR (C-terminal sequence)

Immunogen UNIPROT ID:

Sequence:

Growth properties: Production details:

Formulation:

Recommended controls: IHC: formalin-fixed, paraffin-embedded human liver sections; WB: pooled

human liver microsomes **Bacterial resistance:**

Selectable markers: Additional notes:

Target details

Target: Cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1)

Target alternate names:

Target background: Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.

Cancer Tools.org

Molecular weight:

Ic50:

Applications

Application: IHC ; WB **Application notes:**

Handling

Format: Liquid

Concentration: 1 mg/ml

Passage number:
Growth medium:
Temperature:
Atmosphere:
Volume:

Storage medium:

Storage buffer: PBS with 0.02% azide

Storage conditions: 4° C

Shipping conditions: Shipping at 4° C

Related tools

Related tools:

References

References: Alnabulsi et al. 2017. Br J Cancer. :. PMID: 28557975. ; The differential expression of omega-3 and omega-6 fatty acid metabolising enzymes in colorectal cancer and its prognostic significance. ; Alnabulsi et al. 2016. Characterisation of Arachidonic Acid Metabolising Enzymes in Colorectal Cancer. J Pathol. 240 Suppl 1:S1-S48. PMID: 27747872 ; Nottingham Pathology 2016. 9th Joint Meeting of the British Division of the International Academy of Pathology and the Pathological Society of Great Britain & Ireland, 28 June - 1 July 2016.

